Evaluation of In-Vitro Anti-Mycobacterial Activity and Isolation of Active Constituents from *Crocus sativus* L. (Iridaceae)

Shariq Hussain1, Amirul Haq1, Malik Nisar2, Tanveer Ahmad1 and Priyanka Bhardwaj1

1 Department of Zoology, Bundelkhand University Jhansi-284128 India.
2 Department of Botany, University of Kashmir Srinagar-190006.

* Corresponding author’s Email: s.shariq16@gmail.com

ABSTRACT: Emergence of multi-drug resistant (MDR) and extensively drug resistant (XDR) strains of *Mycobacterium tuberculosis* against present day antitubercular agents is a major challenge to tuberculosis management programme. So, there is a need for novel drug discovery that may leads for development of alternative antitubercular agents. *Crocus sativus* is an important plant of Iridaceae family, known for its aroma; colour and medicinal properties used as traditional medicine to treat several disorders. The main constituents of the plant mostly contain antimycobacterial agents which were screened for antymycobacterial activity against non-pathogenic *Mycobacterium semegmatis* by disk diffusion method. The active extracts and their semipurified fractions were then tested against pathogenic *M. tuberculosis* H37RV, MDR and some clinical isolates by absolute concentration and proportion methods on LJ (Lewisten Jensen) media. The active extracts were subjected to bio-autoassay on TLC (Thin Layer Chromatography) plates followed by silica column chromatography for isolation of potential drug leads. Hexane extract of *C.sativus* (HECS) and methanol extract of *C.sativus* (MECS) showed a promising activity against *M.semegmatis*. HECS and its semi purified fractions F11 and F15 (4% v/v) showed 74%, 68% and 66% inhibition while as MECS and its semi purified fraction F5 showed 72% and 68% inhibition respectively against MDR strain of *M.tuberculosis*.

Key words: Antimycobacterial agents, Tuberculosis, *Crocus sativus*

INTRODUCTION

Tuberculosis (TB) being a highly infectious disease (Agarwal, 2004) with nine million cases of active TB and 1.3 million deaths occurring every year (WHO, 2010), shares major TB burden with 55% and 30% of the total reported cases in Asian and African countries respectively (WHO, 2009). The aim to reduce the global mortality and to eliminate the disease (Raviglione and Uplekar, 2006) several drugs like Rifampicin, Isoniazid, Streptomycin and Ethambutol were introduced in TB control. Indiscriminate use of these drugs has led to widespread multiple drug resistance MDR and extra drug resistance XDR development in *M. tuberculosis* (WHO, 2008; Isemann, 1994; Crofton and Mitchison, 1948) against first and second line anti-tuberculosis drugs (Singh, 2007). New antimicrobial drugs from plants in the research and development (R&D) pipeline have become increasingly more receptive to the potential use of antimicrobials and other drugs (Akinpelu and Onakoya, 2006). A number of medicinal plants have been screened for antimycobacterial activity from various parts of the world (Soejarto et al., 2012; Gupta et al., 2011; Renu et al., 2010; Okunade et al., 2004; Copp, 2003; Newton et al., 2002 & Cantrell et al., 2001.) Indian sub-continent being rich in traditional knowledge of ayurved, few studies has been carried out on antimycobacterial activity of medicinal plants.

Crocus sativus L., commonly known as saffron, belongs to family Iridaceae, known for its aroma, colour and medicinal properties and is regarded as the most costly spice in the world (Mohammad et al., 2011). Each plant grows to 20–30 cm (8–12 in) and bears up to four flowers, each with three vivid crimson stigmas. Chemical analyses of plant extracts have revealed that the main constituents of the plant to be carotenoids, glycosides, monoterpenes, aldehydes, picrocrocin and anthocyanin’s, flavonoids, vitamins (especially riboflavin and thiamine), amino acids, proteins, starch, mineral matter, and gums; other chemical compounds have also been reported in saffron (Fernandez, 2006). The plant has been used in folk medicine as an ant catarrhal, eupetic, expectorant and emmenagogue (Rios et al., 1996), antitumor effects (Nair et al., 1991; Saloni et al., 1991; Tarantilis et al., 1994), counteract atherosclerosis (Gainer and Jones, 1975) , hepatic damage (Wang et al., 1991), antispasmodic (Zargari, 1990), anticonvulsant (Hosseinzadeh and Khorasan 2002), antidepressant (Hosseinzadeh et al., 2004), ant nociceptive and anti-inflammatory (Hosseinzadeh and Younesi, 2002),...
antioxidant (Hosseinzadeh et al., 2009), acetyl cholinesterase inhibiting (Geromichalos et al., 2012), antitussive (Hosseinzadeh and Ghenati, 2006), reducing withdrawal syndrome (Hosseinzadeh and Jahanian, 2010), improving male erectile dysfunction (Hosseinzadeh and Ziaee, 2008), enhancing spatial cognitive abilities after chronic cerebral hypoperfusion (Hosseinzadeh et al., 2012), hypotensive (Imenshahidi et al., 2010) and ant solar (Golmohammadzadeh et al., 2010) properties. Chemical analysis reveals presence of more than 150 chemicals present in saffron stigmas (Bathaie and Mousavi, 2010) among which, all these pharmacological effects have been related to saffron main chemical compounds such as crocin, picrocrocin and safranal which are responsible for saffron exclusive colour, taste and odor, respectively (Melnik et al., 2010).

MATERIAL AND METHODS

Collection of Plant material and extraction: Fresh aerial parts of C.sativus were collected from local hills of Pampered Kashmir in August-September. The plant materials were identified with the help of experts in Department of Botany, University of Kashmir and shade dried before use. The dried plant material was grinded separately and 100 g of plant material was sequentially extracted by Hexane, Chloroform, Ethyl acetate, Methanol and Water (Scheme-1). Organic solvent extracts were filtered twice with what man’s filter paper to remove any residual material and dried in rotary evaporator under vacuum. The water extracts were filtered with what man’s filter paper, filtrate was centrifuged at 5000 rpm for 10 minutes at room temperature to remove any residual material and the supernatant was lyophilized.

Phytochemical screening:

The bioactive extracts were tested for various phytochemicals such as alkaloids, terpenoids, reducing sugars, saponins, tannins, Phlobatannins etc. (Adetuyi et al., 2001; Sofowora, 1982).

Antimycobacterial testing:

Preliminary screening of various solvent extracts was carried out on nonpathogenic fast growing mycobacterial strain, M. senegmatis (MC2-155). The active extracts were tested on M. tuberculosis standard strain H37RV, clinical isolates CL-1 (+3 strain) and CL-2 (+2 strain) and MDR strain.

Preliminary screening on M. senegmatis by disk diffusion method (Bauer et al., 1996): Stock solutions (200mg/ml) of hexane, chloroform, ethyl acetate and methanol extracts of selected plant was prepared in Dimethyl-Sulphoxide (DMSO), whereas water extracts were dissolved water. All the extracts were stored at 4°C prior to use. Petri plates with Middle brook 7H11 agar were seeded with 100 ul of M. senegmatis culture at a concentration of 1.5 x 106 cells/ml (adjusted to the 0.5 McFarland turbidity standards). Sterile filter paper discs (6 mm in diameter) impregnated with 2mg/10ul/disc of plant extracts extract were placed on the petri plates. Sterile discs (6mm diameter) of Rifampicin (20µg/disc) were used as positive control and a disc soaked in 10ul of DMSO was solvent control. The inoculated plates were incubated and the results were recorded by measuring the zones of growth inhibition (Inhibition zone diameter) after 72 hrs. All experiments were carried out in triplicate.

Minimum inhibitory concentration (MIC) by broth dilution method: Bio-active plant extracts were dissolved in DMSO and stock solutions (2mg/ml) in middle brook 7H9 broth was prepared. Ten serial dilutions of the extracts ranging from 2000 µg/ml to 3.9µg/ml concentrations were prepared and the tubes were inoculated with 100 µl of M. senegmatis (1x106cell/ml). Rifampicin (64 µg/ml) was used as a standard drug for comparison and DSMO (10 µl/disc) was used as negative control. The tubes were incubated aerobically at 370C for 24 hrs followed by addition of 50 µl of 0.2 mg/ml 2-(4-iodophenyl) 3-(4-nitrophenyl) -5 phenylenetrazolium chloride (INT) solution. The tubes were tested for color change and the concentration at which a decrease in red color (reduction of INT to Formosan by bacteria) was apparent compared to the next higher concentration was taken as MIC value. All experiments were carried out in triplicate.

Bio-auto assay guided purification of active plant extracts:

Methanol extract of C.sativus (MECS) and Hexane extract of C.sativus (HECS) possessing good activity in disc diffusion assay with promising MIC were subjected to Bio-auto assay on silica TLC plates (Merck). The TLC plates were dipped in Middle Brook 7H 11 agar petri plates, seeded with M.senegmatis and disc diffusion assay was performed. After 72hrs of incubation, plates were sprayed with INT to record zones of growth inhibition.

Isolation of bioactive compounds from MECS and HECS by column chromatography:

MECS and HECS were fractionated on open silica gel (Merck, 60-120 mesh) column chromatography. For MECS the column was eluted with chloroform/methanol gradient (10:0-0:10). The fractions were analyzed by TLC, compared with TLC bio-auto assay and pooled to 5 fractions (F1-5) where as for HECS the column was eluted with hexane/ethyl acetate gradient (10:0-0:10). The fractions were analyzed by TLC, compared with TLC bio-auto assay and pooled to give 20 fractions (F1-F20). All the fractions were tested for antimycobacterial activity on M. senegmatis by disc diffusion assay (Fig.1 & 2).

Antimycobacterial activity of active fractions of MECS and HECS on M. tuberculosis:

MECS, HECS and their active sub-fractions were tested for antimycobacterial activity on M.tuberculosis by the Absolute Concentration and Proportion methods. The
Absolute Concentration Method or minimum inhibitory concentration (MIC):

Standardized inoculums of *M.tuberculosis* (4μl of 4mg/ml bacterial suspension) was grown on drug-free LJ media and media containing Rifampicin (32,64,128 μg/ml), Isoniazid (0.2,1.5 μg/ml), Ethambutol (2,4,6 μg/ml) Streptomycin (8,16,32 μg/ml), MECS, F5 of MECS, HECS and F11 and F15 of HECS (62.5, 125, 250, 500, 1000 μg/ml). Resistance was expressed in terms of the lowest concentration (MIC) of the drug inhibiting growth showing development of ≥20 colonies (Kent and Kubica, 1985).

Proportion method:
A suspension of *M.tuberculosis*, by scrapping approximately 4 mg moist weight of samples (visualized as 2/3 loopful of 3mm internal diameter 24SWG (Thick) wire loop) into 0.3 ml of sterile distilled water in a Bijou Bottle was prepared and vortexes for 30 seconds to produce a uniform suspension. 3. 7 ml of sterile distilled water was then added to the suspension to make it approximately 1mg/ml (S1) and the suspension was kept on the bench for 15-20 minutes to allow the coarser particles to settle down. From this suspension a 10-fold dilution was made by carefully adding 0.2 ml to 1.8 ml sterile distilled water (S2, 10-1) and two further serial dilutions (S3 & S4) were prepared in the similar manner and inoculated one loopful (3 mm external diameter, 24 SWG Thin) on drug free and drug containing LJ slopes. The LJ media with plant extracts was prepared by same procedure as for drug free LJ medium and the plant extracts were incorporated in the medium at concentration of 2 per cent v/v and 4 per cent v/v (2 ml and 4 ml of fresh plant extract was dissolved into 100 ml of culture medium. For positive controls the concentration of drugs was Rifampicin 40 μg/ml, Isoniazid 0.2μg/ml, Ethambutol 2 μg/ml, Streptomycin 8μg/ml (Kent and Kubica, 1985).

Determination of colony forming units (CFU) on Lowenstein-Jensen (L-J) media: The ten-fold dilution of standard 1 mg/ml *M. tuberculosis* suspension (Canetti et al., 1969) were streaked on L-J medium for determining CFU in the presence and absence of plant extracts. A suspension of *M. tuberculosis* 1 mg/ml is equivalent to Mac-Farland standard-1 (Kent and Kubica, 1985). One loopful (6 μl) of this suspension was streaked on the L-J slants using 3 mm external diameter loop.

RESULTS

Antimycobacterial susceptibility testing of extracts against *M.semegmatis*:

The selected plant extracts showed moderate to good antimycobacterial activity in disc diffusion assay. Results showed HECS and MECS were the most active extracts producing zone of inhibition of 22 and 20 mm. respectively. Aqueous extract of plants showed least activity (Table 1). The extracts showing inhibition zone diameter (IZD) greater than 10 were subjected to MIC determination. HECS and MECS were the most active extracts showing MIC value of 250 and 125μg/ml respectively.

Phytochemical analysis:
The active extracts showing inhibition zone diameter greater than 10 mm were tested for phytochemicals. The results of the phytochemical analysis (Table 2) prominently indicate the presence of saponins, steroids, tannins, terpenoids and anthraquinons. Phlobatannins were found to be absent in all the extracts. Saponins were found to be present in several extracts. Phytochemical analysis of active extracts revealed that alkaloids were found to be present in all active extracts except HECS. The polar solvent extracts showed moderate to good activity as compared to non-polar solvents. Alkaloids, saponins, terpenoids, tannins and flavonoids were predominantly present in active extracts.MECS contains alkaloids, saponins, flavonoids, tannis, terpenoids, anthraquinons and cardiac glycosides. HECS contains terpenoids, tannins and anthraquinons, alkaloids, saponins, tannins and anthraquinons. **Isolation of bioactive fractions from MECS and HECS by column chromatography:**

MECS was fractionated on open silica gel (Merck, 60-120 mesh) column chromatography. The column was eluted with chloroform/methanol gradient to obtain 5 fractions out which F5 obtained at 98:2 (Chloroform: MeOH) was most active and produced 27mm zone of inhibition in disc diffusion assay.

Similarly HECS was fractionated on open silica gel (Merck, 60-120 mesh) column chromatography. The column was eluted with hexane/ethyl acetate gradient to obtain 20 fractions out of which F11 and F15 obtained at 77:23 and 71:29 (hexane: ethyl acetate) were most active and produced 23mm and 24 mm zone of inhibition in disc diffusion assay respectively.

Antymycobaterial activity of semipurified fractions of MECS and HECS on *M.tuberculosis*

Absolute concentration method (MIC Method)
A significant inhibition was found on the growth and CFU of *M.tuberculosis* by presences of plant extracts. Upto95 % inhibition was found due to presence of Plant extracts in LJ Medium that of 90% inhibition by MECS, 85% by HECS, 76% by F3 Fraction and 86% inhibition by F11 and F15 Fractions of HECS with a reduction of CFU from near about 30 to 10. The activity was also found to be increased from 2%v/v to 4%v/v of plant extracts (Table 3).
Table 1. Inhibition zone diameters (IZD*) and MIC of various plant extracts Against *Mycobacterium semegmatis*

<table>
<thead>
<tr>
<th>S.No</th>
<th>Extract</th>
<th>IZD (mm)</th>
<th>MIC (μg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hexane</td>
<td>20</td>
<td>250</td>
</tr>
<tr>
<td>2</td>
<td>Chloroform</td>
<td>13</td>
<td>1000</td>
</tr>
<tr>
<td>3</td>
<td>Ethyl acetate</td>
<td>12</td>
<td>1000</td>
</tr>
<tr>
<td>4</td>
<td>Methanol</td>
<td>19</td>
<td>125</td>
</tr>
<tr>
<td>5</td>
<td>Aqueous</td>
<td>10</td>
<td>NA</td>
</tr>
<tr>
<td>6</td>
<td>DMSO**</td>
<td>9</td>
<td>NA</td>
</tr>
</tbody>
</table>

* All values in mm **DMSO= Dimethyl sulfoxide*

Table 2. Phytochemical analysis of solvent extracts of selected medicinal plants

<table>
<thead>
<tr>
<th>S.NO</th>
<th>Extract</th>
<th>Alkaloids</th>
<th>Saponins</th>
<th>Flavonoids</th>
<th>Tannins</th>
<th>Terpenoids</th>
<th>Sugars</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Methanol</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Chloroform</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Ethyl acetate</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Hexane</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Aqueous</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Table 3. Drug susceptibility of clinical specimens of *Mycobacterium tuberculosis* along with standard (H37 RV ATCC No.35838), MDR strain; CL-1 (+3 strain) and CL-2 (+2 strain) by LJ Proportion Method

<table>
<thead>
<tr>
<th>S. No</th>
<th>Extract/Fraction</th>
<th>Strain</th>
<th>MIC (μg/ml)</th>
<th>LJ Proportion Method</th>
<th>Mean CFU on Media</th>
<th>% age Inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Plant Extract</td>
<td>Plant Extract</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Control</td>
<td>2%v/v</td>
<td>4%v/v</td>
</tr>
<tr>
<td>1</td>
<td>MECS</td>
<td>H37RV</td>
<td>500</td>
<td>47</td>
<td>27</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MDR</td>
<td>500</td>
<td>27</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CL-1</td>
<td>250</td>
<td>72</td>
<td>21</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CL-2</td>
<td>250</td>
<td>65</td>
<td>22</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>HECS</td>
<td>H37RV</td>
<td>500</td>
<td>47</td>
<td>22</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MDR</td>
<td>500</td>
<td>28</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CL-1</td>
<td>250</td>
<td>72</td>
<td>21</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CL-2</td>
<td>125</td>
<td>65</td>
<td>24</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>F5 (MECS)</td>
<td>H37RV</td>
<td>250</td>
<td>47</td>
<td>26</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MDR</td>
<td>250</td>
<td>25</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CL-1</td>
<td>125</td>
<td>72</td>
<td>21</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CL-2</td>
<td>125</td>
<td>65</td>
<td>27</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>F11 (HECS)</td>
<td>H37RV</td>
<td>500</td>
<td>47</td>
<td>26</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MDR</td>
<td>500</td>
<td>20</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CL-1</td>
<td>500</td>
<td>72</td>
<td>17</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CL-2</td>
<td>250</td>
<td>65</td>
<td>24</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>F15 (HECS)</td>
<td>H37RV</td>
<td>500</td>
<td>47</td>
<td>25</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MDR</td>
<td>250</td>
<td>30</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CL-1</td>
<td>125</td>
<td>72</td>
<td>28</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CL-2</td>
<td>125</td>
<td>65</td>
<td>19</td>
<td>14</td>
</tr>
</tbody>
</table>

DISCUSSION

M. semegmatis is fast growing mycobacterium which can be very useful for preliminary screening of large number of drug candidates like the natural plant extracts (Emma *et al.*, 2010). In this study the extracts exhibiting activity against *M. semegmatis* were also active against *M. tuberculosis*, justifying use of *M. semegmatis* in initial screening. Against *M. semegmatis*, MECS and HECS were found to have MIC of 125 and 250μg/ml with IZD of about 19 and 20 mm respectively. While as MIC of 250, 250, 125 and 125μg/ml with 74, 88 and 90% inhibition against standard, MDR and CL-1 and CL-2 strains of *M. tuberculosis* respectively. HECS was found more active against CL-2 with MIC of 125μg/ml with 76% of inhibition. F5 produced a 125μg/ml of MIC against CL-1 by inhibiting 86% of bacterial growth while as H37RV and MDR strains were found to have inhibited by...
68%. The F11 inhibited CL-2 by 83% and that of F15 inhibited CL-1 and CL-2 by 86% with MIC of 125μg/ml. The semi purified fractions (F5 of MECS; F11 and F15 of HECS) obtained by partial purification on silica column concentrated the active constituent evident from decrease in MIC and increase in percentage of inhibition. This study opens a possibility of obtaining novel compounds for the treatment of tuberculosis including MDR. There is, therefore, need to carry out some more studies in animal models of tuberculosis to reaffirm these findings. Further studies are, however, needed to reconform the antimycobacterial properties of these extract and identify the active component through advanced techniques, such as GC-MS.

Acknowledgement
The authors are highly thankful to all the staff members of Department of Microbiology, Rani Laxmi Bhai Hospital, Jhansi for providing laboratory facilities.

REFERENCES

